Unit 1: Transformations in the Coordinate Plane

Transformations

Choose the word from the list below that best matches each phrase.

```
composition of transformations
rigid motion
transformation(s)
preimage translation
```

1. The figure that results from a transformation
2. The original figure in a transformation
3. Flipping, sliding, or turning a figure
4. Two or more transformations in combination Composition of transformations

Transformations

Choose the word from the list below that best matches each phrase.

```
composition of transformations
rigid motion
transformation(s)
```

5. This transformation is an example of a translation because the figure slides in one direction, but does not flip, turn,
 or change size.
6. This translation is an example of $a(n)$ Rigid motion because it preserves distance and angle measures.
corresponding parts image preimage

Transformations

angle of rotation congruent reflection
 center of rotation glide reflection rotation
 congruence transformation line of reflection translation

8. In the coordinate plane above, all the triangles are \qquad congruent Congruence
9. To show that any two figures above are congruent, you can identify a
transformation \qquad that maps one figure to another.
10. A transformation that maps $\triangle A B C$ to $\triangle D E F$ is a \qquad that slides $\triangle A B C$ four units to the right and two units down.

Transformations

angle of rotation congruent reflection
center of rotation glide reflection rotation
congruence transformation line of reflection translation

11. A transformation that maps $\triangle D E F$ to $\triangle G H I$ is a \qquad rotation with Angle of rotation of 180° and Center of rotation at the origin.
12. A transformation that maps $\Delta G H I$ to $\Delta J K L$ is a \qquad with Line of reflection of $x=4$.
13. A transformation that maps $\triangle A B C$ to $\Delta J K L$ is a Glide reflection by sliding $\triangle A B C$ twelve units to the right and two units down and then reflecting across the x-axis.

Iransformations

angle of rotation counterclockwise

$\mathrm{rima}^{\circ}-\mathrm{O}_{1}$

clockuvise

 rotation$\mathrm{rama}^{\circ}-\mathrm{O}_{1}$
14. Point X
20.

14. Center of rotation
 15. Rigid motion

16. rotation
17. Angle of rotation
18. $r_{(270,0)}$
19. clockwise
20. counter-clockwise
21. $r_{(90,0)}$
22. $r_{(180,0)}$

Unit 1: Transformations in the Coordinate Plane

1.1 Transformations

1.1 Transformations

A transformation

 is a change in the \qquad position shape , or \qquad of a figure.The original figure is called the \qquad The resulting figure is called the image . A transformation \qquad the preimage to the image.

Arrow notation (\rightarrow) is sometimes used to describe a transformation, and primes (') are used to label the image.

A dilation is a transformation that changed the size of a figure.
If we increase the size of a figure it is called an enlargement.
If we decrease the size of a figure it is called a \qquad reduction .

Daily Agenda

Today's Date

January 9, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

1.1 Iransformations

Transformations			
Isometry			
Translation	Reflection	Rotation	Dilation
slide			

Daily Agenda Today's Date

January 9, 2017

What are we learning today? MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?
Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets
What's for homework?
Booklet pg.

1.1 Iransformations

Example 1

Identify the transformation, then use arrow notation to describe the transformation.
a)

$$
\Delta A B C \rightarrow \Delta A^{\prime} B^{\prime} C^{\prime}
$$

rotation
b)

$M N O P \rightarrow M^{\prime} N^{\prime} O^{\prime} P^{\prime}$
translation
\square Check for Understanding
Identify the transformation, then use arrow notation to describe the transformation.
c)

$D E F G \rightarrow D^{\prime} E^{\prime} F^{\prime} G^{\prime}$
reflection
d)

rotation

Daily Agenda

Today's Date

January 9, 2017

What are we learning today? MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

Booklet pg

1.1 Iransformations

Example 2

A figure has vertices at $A(1,-1), B(2,3)$ and $C(4,-2)$. After a transformation, the image of the figure has vertices at $A^{\prime}(-1,-1), B^{\prime}(-2,3)$ and $C^{\prime}(-4,-2)$. Draw the preimage and the image, then identify the transformation.

					${ }^{6}$						
				B				B			
								:			
				,			\vdots				
6	5			2	1			2	\%	4	5
					- -1			\cdots	\cdots		
	-								-		

Reflection across the y-axis

Daily Agenda
 Today's Date

January 9, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

[^0]
1.1 Iransformations

\square Check for Understanding

A figure has vertices at $E(2,0), F(2,-1), G(5,-1)$ and $H(5,0)$. After a transformation, the image of the figure has vertices at $E^{\prime}(0,2), F^{\prime}(1,2), G^{\prime}(1,5)$ and $H^{\prime}(0,5)$. Draw the preimage and the image, then identify the transformation.

90° rotation counter-clockwise

Dajly Agenda

 Today's DateJanuary 9, 2017

What are we learning today? MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

[^1]
Unit 1: Transformations in the Coordinate Plane

1. 1 Transiormations

- Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure

Direct

Worktime

- INDEPENDENT PRACTICE
- Booklet Pages
- HOMEWORK
- Booklet Pages

Unit 1: Transformations in the Coordinate Plane

1.2 Iranslations

 the plane.In a \qquad horizontal \qquad translation, the x-coordinate changes but the y-coordinate stays the same.

This translation can by represented by the function $T(x, y)=$ $(x+a, y)$

In a \qquad translation, the y-coordinate changes but the x-coordinate stays the same.

This translation can by represented by the function $T(x, y)=\underline{(x, y+b)}$

Daily Agenda

Today's Date

January 10, 2017

What are we learning today?
 with transformations in the plane

What am I going to do?
Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

Booklet pg.

1.2 Iranslations

In a \qquad slant translation, both the x - and y -coordinate change.

This translation can by represented by the function $T(x, y)=\underline{(x+\boldsymbol{a}, \boldsymbol{y}+\boldsymbol{b})}$

Doily Agenda

Today's Date

```
January 10, 2017
```

What are we learning today? MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

```
Booklet pg.
```


1.2 Iranslations

\square Check for Understanding

Find the coordinates for the image of $\triangle A B C$ after the translation $(x, y) \rightarrow(x-2, y+4)$. Draw the image.

$$
\begin{aligned}
& J^{\prime}(-1,5) \quad K^{\prime}(1,5) \\
& M^{\prime}(-1,0) \quad L^{\prime}(1,0)
\end{aligned}
$$

Dajly Agenda
 Today's Date

January 10, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?
Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

```
Booklet pg.
```


1.2 Iranslations

Example 2

A four-sided figure has the following coordinates $A(1,-5), B(2,-6), C(3,-7), D(4,-8)$.
After a translation, its coordinates are $A^{\prime}(6,-7), B^{\prime}(7,-8), C^{\prime}(8,-9), D^{\prime}(9,-10)$. Write the rule for the translation.

$$
T(x, y)=(x+5, y-2)
$$

Daily Agenda
 Today's Date

January 10, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

1.2 Iranslations

\square Check for Understanding
Use the graph below to answer questions 1-3. $\Delta R S T$ has been translated to $\Delta R^{\prime} S^{\prime} T^{\prime}$.

1. Write the coordinates for the vertices of the pre-image and image.

Pre-image	Image
$R:(\mathbf{1 4}, \mathbf{4})$	$R^{\prime}:(\mathbf{1 0}, \mathbf{2})$
$S:(\mathbf{1 0}, \mathbf{7})$	$S^{\prime}:(\mathbf{- 6 , 1})$
$T:(\mathbf{5}, \mathbf{4})$	$T^{\prime}:(\mathbf{- 1}, \mathbf{- 2})$

2. Show by using jumps in the graph above how you would move on the coordinate plane to get from the vertices in the pre-image to the corresponding vertices in the image.

4 units to the right and 6 units down

3. Write the coordinate rule that describes this translation.

$$
T(x, y)=(x+4, y-6)
$$

Dajly Agenda

Today's Date

January 10, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

Unit 1: Transformations in the Coordinate Plane

1. 2 Transtations

- Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure

Direct

Explanation

- INDEPENDENT PRACTICE
- Booklet Pages
- HOMEWORK
-Booklet Pages

Worktime

- How can I apply all that I have learned about Translations to demonstrate mastery of the standards?

Unit 1: Transformations in the Coordinate Plane

1.3 Reflections

1.3 Reflections

A reflection is a transformation that flips a figure across a line called a
Line of reflection

When a point is reflected across the y-axis, the sign of its \qquad x-coordinate changes.

The function for a reflection across the y -axis is $R_{y \text {-axis }}(x, y)=\underline{(-x, y)}$

When a point is reflected across the x -axis,
the sign of its \qquad \boldsymbol{y}-coordinate changes.

The function for a reflection across the y-axis is $R_{x-a x i s}(x, y)=(\boldsymbol{x},-\boldsymbol{y})$

Dajly Agenda

Today's Date

```
January 11, 2017
```

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

Booklet pg.

1.3 Reflections

Another common line of reflection is the diagonal line $y=x$.
To reflect over this line, SWAP the x - and y-coordinates.

The function for a reflection across line $y=x$ is
$R_{y=x}(x, y)=$ \qquad

To reflect over the line $y=-x$, swap and opposite sign the x - and y-coordinates.

The function for a reflection across line $y=-x$ is

$$
R_{y=-x}(x, y)=\left(-y_{2}-x\right)
$$

Daily Agenda

Today's Date

January 11, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

Booklet pg.

1.3 Reflections

Example 1

Reflect the figure with the given vertices across the given line.

Dajly Agenda

Today's Date

January 11, 2017

$$
\begin{array}{lr}
R(-2,2) & \boldsymbol{R}^{\prime}(\mathbf{2},-\mathbf{2}) \\
S(5,0) & S^{\prime}(\mathbf{0}, \mathbf{5}) \\
T(3,-1) & T^{\prime \prime}(-\mathbf{1}, 3)
\end{array}
$$

$S(3,4)$	$\boldsymbol{S}^{\prime}(-\mathbf{3}, \mathbf{4})$
$T(3,1)$	$\boldsymbol{T}^{\prime}(-\mathbf{3}, \mathbf{1})$
$U(-2,1)$	$\boldsymbol{U}^{\prime}(\mathbf{2}, \mathbf{1})$
$V(-2,4)$	$\boldsymbol{V}^{\prime}(\mathbf{2}, \mathbf{4})$

Reflect over the $y=x$

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

Booklet pg.

1.3 Reflections

■ Check for Understanding

Reflect the figure with the given vertices across the given line.

Reflect over the x-axis

$A(1,2)$	$\boldsymbol{A}^{\prime}(\mathbf{1},-\mathbf{2})$
$B(3,6)$	$\boldsymbol{B}^{\prime \prime}(3,-6)$
$C(5,4)$	$\boldsymbol{C}^{\prime}(5,-4)$

Reflect over the y-axis

$$
\begin{array}{ll}
A(-6,-1) & \boldsymbol{A}^{\prime}(\mathbf{6}, \mathbf{1}) \\
B(-2,-1) & \boldsymbol{B}^{\prime}(\mathbf{2}, \mathbf{1}) \\
C(-2,-4) & \boldsymbol{C}^{\prime}(\mathbf{2}, \mathbf{4})
\end{array}
$$

Reflect over the $y=x$

$J(-4,3)$	$\boldsymbol{J}^{\prime}(\mathbf{3},-\mathbf{4})$
$K(0,4)$	$\boldsymbol{K}^{\prime}(\mathbf{4}, \mathbf{0})$
$L(2,2)$	$\boldsymbol{L}^{\prime}(\mathbf{2}, \mathbf{2})$
$M(-1,1)$	$\boldsymbol{M}^{\prime}(\mathbf{1},-\mathbf{1})$

Daily Agenda

Today's Date

January 11, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?
Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

Booklet pg.

1.3 Reflections

Example 2

Reflect the figure with the given vertices across the given line.

Reflect over the $y=-1$
$\begin{array}{llll}A(-1,1) & \boldsymbol{A}^{\prime}(-\mathbf{1},-\mathbf{3}) & P(4,2) & \boldsymbol{P}^{\prime}(\mathbf{0}, \mathbf{2}) \\ B(-5,1) & \boldsymbol{B}^{\prime}(-\mathbf{5},-\mathbf{3}) & Q(3,0) & \boldsymbol{Q}^{\prime}(\mathbf{1}, \mathbf{0}) \\ C(-4,2) & \boldsymbol{C}^{\prime}(-4,-4) & R(5,-5) & \boldsymbol{R}^{\prime}(-\mathbf{1},-5)\end{array}$
$D(-2,2) \quad \boldsymbol{D}^{\prime}(-2,-4)$
Daily Agenda
Today's Date

Reflect over the $y=-x$

$$
\begin{array}{ll}
D(1,1) & \boldsymbol{D}^{\prime}(-\mathbf{1},-\mathbf{1}) \\
E(3,2) & \boldsymbol{E}^{\prime}(-\mathbf{2},-3) \\
F(2,4) & \boldsymbol{F}^{\prime}(-\mathbf{4},-\mathbf{2})
\end{array}
$$

```
January 11, 2017
```

What are we learning today? MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

Booklet pg.

1.3 Reflections

■ Check for Understanding

Doily Agenda

Reflect the figure with the given vertices across the given line.

Reflect over the $y=3$

$G(-6,-1)$	$K(-2,-1)$	$S(-2,-4)$	$S^{\prime}(\mathbf{1 0},-\mathbf{4})$
$H(-6,1)$	$L(-3,-3)$	$T(-1,1)$	$\boldsymbol{T}^{\prime}(\mathbf{9}, \mathbf{1})$
$J(-2,1)$	$\boldsymbol{G}^{\prime}(-\mathbf{6}, \mathbf{7}) \boldsymbol{H}^{\prime}(-\mathbf{6}, \mathbf{5})$	$U(2,1)$	$\boldsymbol{U}^{\prime}(\mathbf{6}, \mathbf{1})$

$J^{\prime}(-2,7) \quad K^{\prime}(-2,5) L^{\prime}(-3,9)$

Reflect over the $y=-x$
$A(-4,-2)$
$B(-2,0)$
C $(-5,1)$

Today's Date

January 11, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment
with transformations in the plane

What am I going to do?
Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

Booklet pg

Unit 1: Transformations in the Coordinate Plane

1.3 Reflections

- Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure

Direct
Explanation

Worktime

- INDEPENDENT PRACTICE
- Booklet Pages
- HOMEWORK
- Booklet Pages
- How can I apply all that I have learned about Reflections to demonstrate mastery of the standards?

Unit 1: Transformations in the Coordinate Plane

1.4 Rotations

1.4 Rotations

A rotation is a transformation that turns a figure around a point, called the \qquad of rotation .

counter-clockwise

 clockwise is considered the positive direction, so is considered the negative direction.

Today's Date

January 13, 2017

What are we learning today?

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

Booklet pg.

1.4 Rotations

A 90° rotation is equivalent to a $270^{\circ} \mathrm{CW}$ rotation and has the function:

$$
R_{90^{\circ}}(x, y)=(-y, x)
$$

A 180° rotation is equivalent to a $180^{\circ} \mathrm{CW}$ rotation and has the function:

$$
R_{180^{\circ}}(x, y)=(-x,-y)
$$

A 270° rotation is equivalent to a \qquad rotation and has the function:

$$
R_{270^{\circ}}(x, y)=(y,-x)
$$

Dajly Agenda
 Today's Date

January 13, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

Booklet pg.

1.4 Rotations

Daily Agenda

 Today's Date

 Today's Date}

January 13, 2017

What are we learning today?
MGSE9 - 12.G.CO. 4 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

Booklet pg.

1.4 Rotations

\square Check for Understanding

Triangle ABC is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of $90^{\circ}, 180^{\circ}$, and 270° about the origin.

Daily Agenda

Today's Date

```
January 13, 2017
```

What are we learning today?

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

[^2]
Unit 1: Transformations in the Coordinate Plane

1. 4 Rofafions

- Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure

Direct

Explanation

Worktime

- INDEPENDENT PRACTICE
- Booklet Pages
- HOMEWORK
-Booklet Pages
- How can I apply all that I have learned about Rotations to demonstrate mastery of the standards?

Unit 1: Transformations in the Coordinate Plane

1.5 Symmetry

1.5 Symmetry

A Regular polygon_is a polygon with all sides equal in length
and all angles equal in measure.
If a regular polygon has n sides, then it also has n Line of Symmetry. When you reflect a figure over line of symmetry, the image is ___congruent to and in the same location as the original Pre-image.

When this happens, we say that the reflection maps the figure onto itself. This type of symmetry is called ___ Line_ symmetry or Reflectional symmetry . A figure that has_Rotational_symmetry_ will map onto itself more than once during a 360° turn. To find the rotational symmetry, divide 360° by the number of sides.

Daily Agenda

Today's Date

January 17, 2017

What are we learning today?

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

Booklet pg.

1.5 Symmetry

Example 1

Tell whether each figure has line symmetry.
a)

8

\square Check for Understanding

Tell whether the figure has line symmetry.

Daily Agenda Today's Date

```
January 17, 2017
```

What are we learning today? MGSE9 - 12.G.CO. 3 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

1.5 Symmetry

Example 2

Determine whether each figure has rotational symmetry. If so, describe the rotation that maps the figure onto itself.
a)

$$
\begin{gathered}
\left.360^{\circ} \div 4=90^{\circ}\right) \\
90^{\circ}, 180^{\circ}, 270^{\circ}
\end{gathered}
$$

$360^{\circ} \div 6=60^{\circ}$
$60^{\circ}, 120^{\circ}, 180^{\circ}$. $240^{\circ}, 300^{\circ}$

■ Check for Understanding

Determine whether the figure has rotational symmetry. If so, describe the rotation that maps the figure onto itself.

$$
\begin{gathered}
360^{\circ} \div 8=45^{\circ} \\
45^{\circ}, 90^{\circ}, 135^{\circ} \\
180^{\circ}, 225^{\circ}, 270^{\circ}
\end{gathered}
$$

Dajly Agenda Today's Date

```
January 17, 2017
```

What are we learning today? MGSE9 - 12.G.CO. 3 - Experiment with transformations in the plane

What am I going to do?
Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

1.5 Symmetry

Example 3

List all the transformations that map the following graphs onto itself.
a)

4 Lines of Symmetry

$$
x=1, y=1
$$

Rotational @ $(1,1)$ $90^{\circ}, 180^{\circ}, 270^{\circ}$

Dajly Agenda

Today's Date

```
January 17, 2017
```

What are we learning today?

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

Unit 1: Transformations in the Coordinate Plane

1.5 Symmetry

- Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure

Direct

Explanation

Unit 1: Transformations in the Coordinate Plane

1.6 Sequence of Transformations

1.6 Sequence of Iransformations

Sometimes, more than one transformation is needed to produce a particular image from a given pre-image.

To determine the necessary sequence of transformations, compare the \qquad image to the Pre-image. If the orientation of the figure has changed, then a rotation \qquad or \qquad has probably taken place.

A \square Composition of transformation is one transformation followed by another. A \qquad glide reflection is the composition of a translation and a reflection across a line parallel to the vector of translation.

Daily Agenda

Today's Date

January 18, 2017

What are we learning today?

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?
Daily Exit Tickets

What's for homework?

Booklet pg.

1.6 Sequence of Iransformations

Example 1

Draw the result of each composition of transformations.
Reflect the triangle over the line $y=1$, then translate 3 units down.

- Check for Understanding

Draw the result of each composition of transformations.
Reflect the triangle over the x-axis, then translate 3 units to the left.

Daily Agenda

Today's Date

January 18, 2017

What are we learning today? MGSE9 - 12.G.CO. 3 - Experiment with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

1.6 Sequences of Transformations

Example 2

Identify a sequence of transformations that will map each pre-image onto its final image. Use correct transformation notation.

Check for Understanding
Identify a sequence of transformations that will map each pre-image onto its final image. Use correct transformation notation.

Daily Agenda

Today's Date

January 18, 2017

What are we learning today? MGSE9 - 12.G.CO. 3 - Experiment
with transformations in the plane

What am I going to do?

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

Unit 1: Transformations in the Coordinate Plane

 1.6 Sequence of Iransformations- Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure

Direct

Explanation

[^0]: Booklet pg.

[^1]: Booklet pg

[^2]: Booklet pg.

