Unit 1: Transformations in the Coordinate Plane

Vocabulary Builder

Choose the word from the list below that best matches each phrase.

corresponding parts preimage	image translation
Image	
	corresponding parts preimage Image

2. The original figure in a transformation

transformation

Pre-Image

3. Flipping, sliding, or turning a figure

4. Two or more transformations in combination

Composition of transformations

Choose the word from the list below that best matches each phrase.

	composition of transfor rigid motion transformation(s)	rmations	correspond preimage	ing parts	image translation
5. This transform because the figur or change size.	nation is an example of a re slides in one direction, bu	translati It does not flip, t	ion urn,		

 In a translation, the sides or angles of the preimage and image that have the same lengths or angle measures are <u>Corresponding parts</u>.

13. A transformation that maps $\triangle ABC$ to $\triangle JKL$ is a **<u>Glide reflection</u>** by sliding $\triangle ABC$ twelve units to the right and two units down and then reflecting across the x-axis.

Unit 1: Transformations in the Coordinate Plane

1.1 Transformations

	Daily Agenda
A transformation is a change in the position ,	Today's Date
, or of a figure.	January 9, 2017
The original figure is called the <u>pre-ímage</u> . The resulting figure is called the	What are we learning today?
A transformation <u>Maps</u> the preimage to the image.	MGSE9 – 12.G.CO.4 - Experiment with transformations in the plane
Arrow notation (\rightarrow) is sometimes used to describe a transformation, and <u>Primes</u> (') are used to label the image	What am I going to do?
are used to faber the image.	Transformations in the Coordinate Plane
A dilation is a transformation that changed the size of a figure.	How will I show you I learned it?
If we increase the size of a figure it is called an <i>enlargement</i> .	Daily Exit Tickets
If we decrease the size of a figure it is called a <u>reduction</u> .	What's for homework?
	Booklet pg.

	Transfor	mations	
	Isometry		
Translation	Reflection	Rotation	Dilation
		45	K
Slide	Flip	Turn	Size Change

Daily Agenda

Example 1

Identify the transformation, then use arrow notation to describe the transformation.

Check for Understanding

Identify the transformation, then use arrow notation to describe the transformation.

rotation

Booklet pg.

Example 2

A figure has vertices at A(1, -1), B(2, 3) and C(4, -2). After a transformation, the image of the figure has vertices at A'(-1, -1), B'(-2, 3) and C'(-4, -2). Draw the preimage and the image, then identify the transformation.

Reflection across the y-axis

MGSE9 – 12.G.CO.4 - Experiment with transformations in the plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework? Booklet pg.

Check for Understanding

A figure has vertices at E(2,0), F(2,-1), G(5,-1) and H(5,0). After a transformation, the image of the figure has vertices at E'(0,2), F'(1,2), G'(1,5) and H'(0,5). Draw the preimage and the image, then identify the transformation.

What are we learning today?

MGSE9 – 12.G.CO.4 - Experiment with transformations in the plane

How will I show you I learned it?

Daily Exit Tickets

90° rotation counter-clockwise

Unit 1: Transformations in the Coordinate Plane 1.1 Transformations

• Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure

- INDEPENDENT
 PRACTICE
 - Booklet Pages
- HOMEWORK
 - Booklet Pages

Direct Explanation

 How can I apply all that I have learned about
 Transformations to demonstrate mastery of the standards?

Closing

2

Unit 1: Transformations in the Coordinate Plane

1.2 Translations

Check for Understanding

Find the coordinates for the image of $\triangle ABC$ after the translation $(x, y) \rightarrow (x - 2, y + 4)$. Draw the image.

J'(-1,5) K'(1,5)M'(-1,0) L'(1,0)

Example 2

A four-sided figure has the following coordinates A(1, -5), B(2, -6), C(3, -7), D(4, -8).

After a translation, its coordinates are A'(6, -7), B'(7, -8), C'(8, -9), D'(9, -10). Write the rule for the translation.

T(x, y) = (x + 5, y - 2)

Check for Understanding

Use the graph below to answer questions 1-3. ΔRST has been translated to $\Delta R'S'T'$.

1. Write the coordinates for the vertices of the pre-image and image.

Pre-image	Image
^{R:} (-14, 4)	^{<i>R'</i>} :(−10, −2)
^{S:} (-10, 7)	^{S':} (-6 , 1)
^{T:} (-5, 4)	^{<i>T'</i>:} (-1 , -2)

2. Show by using jumps in the graph above how you would move on the coordinate plane to get from the vertices in the pre-image to the corresponding vertices in the image.

4 units to the right and 6 units down

3. Write the coordinate rule that describes this translation.

T(x, y) = (x + 4, y - 6)

Daily Agenda

What are we learning today?

MGSE9 – 12.G.CO.4 - Experiment with transformations in the plane

Unit 1: Transformations in the Coordinate Plane 1.2 Translations

• Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure INDEPENDENT
 PRACTICE

- Booklet Pages
- HOMEWORK
 - Booklet Pages

Direct Explanation

Worktime

 How can I apply all that I have learned about Translations to demonstrate mastery of the standards?

Closing

2

Unit 1: Transformations in the Coordinate Plane

1.3 Reflections

Another common line of reflection is the diagonal line y = x.

To reflect over this line, **SWOP** the x- and y-coordinates.

The function for a reflection across line y = x is $R_{y=x}(x, y) = (y, x)$

and opposite sign

To reflect over the line y = -x, **SWOP** the *x*- and *y*-coordinates.

The function for a reflection across line y = -x is

 $R_{y=-x}(x,y) = (-y,-x)$

Example 1

Reflect the figure with the given vertices across the given line.

Reflect over the *x*-axis

X'(2,1) X(2, -1)Y(-4,-3) **Y**'(-4,3) Z'(3, -2)Z(3, 2)

S'(-3,4) **U**'(2, 1) V'(2,4)

What am I going to do? Transformations in the Coordinate Plane How will I show you I learned it? Daily Exit Tickets What's for homework? Booklet pg.

Deily Agende

Check for Understanding

Reflect the figure with the given vertices across the given line.

Reflect over the *x*-axis

A(1,2)

B(3,6)

C(5,4)

-6, -1)	A'(6,−1)
-2, -1)	B '(2, -1)
-2, -4)	C'(2, -4)

Reflect over the y-axis

Example 2

Reflect the figure with the given vertices across the given line.

Reflect over the y = -1

 $\begin{array}{l} A'(-1,1) & A'(-1,-3) \\ B(-5,1) & B'(-5,-3) \\ C(-4,2) & C'(-4,-4) \\ D(-2,2) & D'(-2,-4) \end{array}$

Reflect over the y = -x

 $D(1,1) \quad D'(-1,-1) \\ E(3,2) \quad E'(-2,-3) \\ F(2,4) \quad F'(-4,-2)$

What are we learning today?

January 11, 2017

MGSE9 – 12.G.CO.4 - Experiment with transformations in the plane What am I going to do? Transformations in the Coordinate Plane How will I show you I learned it? Daily Exit Tickets What's for homework? Booklet pg.

Check for Understanding

S'(10, -4)

T'(9, 1)

U'(6, 1)

A(-4, -2)

C(-5, 1)

B(-2,0)

Reflect over x = 4

Reflect the figure with the given vertices across the given line.

Reflect over the y = 3

G(-6,-1) K(-2,-1)S(-2, -4)

T(-1, 1)H(-6,1) L(-3,-3)

J(-2,1) G'(-6,7) H'(-6,5) U(2,1) J'(-2,7) K'(-2,5)L'(-3,9)

Unit 1: Transformations in the Coordinate Plane 1.3 Reflections

 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure INDEPENDENT
 PRACTICE

- Booklet Pages
- HOMEWORK
 - Booklet Pages

Direct Explanation

Worktime

 How can I apply all that I have learned about Reflections to demonstrate mastery of the standards?

Closing

2

Unit 1: Transformations in the Coordinate Plane

1.4 Rotations

A rotation is a transformation that turns a figure around a point, called the <u>center</u> of <u>rotation</u>.

<u>counter-clockwise</u> clockwise is considered the positive direction, so

is considered the negative direction.

A 90° rotation is equivalent to a 270° CW rotation and has the function:

 $R_{90^{\circ}}(x,y) = \underline{(-y,x)}$

A 180° rotation is equivalent to a <u>180° CW</u> rotation and has the function:

$$R_{180^{\circ}}(x,y) = \underline{(-x,-y)}$$

$$R_{270^{\circ}}(x,y) = (y,-x)$$

Daily Agenda Today's Date January 13, 2017 What are we learning today? MGSE9 – 12.G.CO.4 - Experiment with transformations in the plane What am I going to do? Transformations in the Coordinate Plane How will I show you I learned it? Daily Exit Tickets What's for homework? Booklet pg.

Check for Understanding

Triangle ABC is graphed on the coordinate plane. Draw the image of this triangle after counterclockwise rotations of 90°, 180°, and 270° about the origin.

Unit 1: Transformations in the Coordinate Plane 1.4 Rotations

• Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure INDEPENDENT
 PRACTICE

- Booklet Pages
- HOMEWORK
 - Booklet Pages

Direct Explanation

Worktime

 How can I apply all that I have learned about Rotations to demonstrate mastery of the standards?

Closing

2

Unit 1: Transformations in the Coordinate Plane

1.5 Symmetry

A **Regular polygon** is a polygon with all sides equal in length and all angles equal in measure.

If a regular polygon has *n* sides, then it also has *n* **Line** of **Symmetry**

When you reflect a figure over line of symmetry, the image is <u>congruent</u> to and in the same location as the original <u>Pre-image</u>.

When this happens, we say that the reflection maps the figure onto itself. This type of symmetry is called <u>Line symmetry</u> or <u>Reflectional</u> <u>symmetry</u>. A figure that has <u>Rotational</u> <u>symmetry</u> will map onto itself more than once during a 360° turn. To find the rotational symmetry, divide <u>360°</u> by the number of sides.

Example 1

Tell whether each figure has line symmetry.

b)

Check for Understanding

Tell whether the figure has line symmetry.

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

What's for homework?

Booklet pg.

Determine whether each figure has rotational symmetry. If so, describe the rotation that maps the figure onto itself.

Check for Understanding

Determine whether the figure has rotational symmetry. If so, describe the rotation that maps the figure onto itself.

360° ÷ 8 = 45° 45°, 90°, 135°, 180°, 225°, 270°

Example 3

List all the transformations that map the following graphs onto itself.

Check for Understanding $\mathbf{\nabla}$

List all the transformations that map the following graphs onto itself.


```
2 Lines of Symmetry
   x = -2, y = 1
 Rotational @ (-2, 1)
        180°
```


Unit 1: Transformations in the Coordinate Plane 1.5 Symmetry

• Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure INDEPENDENT
 PRACTICE

- Booklet Pages
- HOMEWORK
 - Booklet Pages

Direct Explanation

Worktime

 How can I apply all that I have learned about Symmetry to demonstrate mastery of the standards?

Closing

2

Unit 1: Transformations in the Coordinate Plane

1.6 Sequence of Transformations

1.6 Sequence of Transformations

Sometimes, more than one transformation is needed to produce a particular image from a given pre-image.

To determine the necessa	ry sequen	ce of transformatio	ns, compare the	image
to the Pre-image	If the orientation of the figure has changed, then a			a
rotation	_or	reflection	_has probably taken	place.

 A
 Composition
 of
 transformation
 is one transformation

 followed by another. A
 glide
 reflection
 is the composition of a

translation and a reflection across a line parallel to the vector of translation.

1.6 Sequence of Transformations

Example 1

Draw the result of each composition of transformations. Reflect the triangle over the line y = 1, then translate 3 units down.

Check for Understanding

Draw the result of each composition of transformations. Reflect the triangle over the x-axis, then translate 3 units to the left.

1.6 Sequences of Transformations

Example 2

Identify a sequence of transformations that will map each pre-image onto its final image. Use correct transformation notation.

Sequence 1: T(x, y) = (x + 5, y - 4)Sequence 2: R_{x-axis}

Check for Understanding

Identify a sequence of transformations that will map each pre-image onto its final image. Use correct transformation notation.

Sequence 1: 90° *CW Rotation* (0,2) **Sequence 2:** T(x, y) = (x, y + 4)

Transformations in the Coordinate Plane

How will I show you I learned it?

Daily Exit Tickets

Unit 1: Transformations in the Coordinate Plane 1.6 Sequence of Transformations

 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure

- INDEPENDENT
 PRACTICE
 - Booklet Pages
- HOMEWORK
 - Booklet Pages

Direct Explanation

Worktime

 How can I apply all that I have learned about Sequence of Transformations to demonstrate mastery of the standards?

Closing

2